CKD帶制動超無活塞桿型氣缸,日本ckd無桿氣缸
CKD帶制動超無活塞桿型氣缸與液壓缸的連接形式,可分為串聯型與并聯型兩種。前面所述為串聯型,圖42.2-6為并聯型氣-液阻尼缸。串聯型缸體較長;加工與安裝時對同軸度要求較;有時兩缸間會產生竄氣竄油現象。并聯型缸體較短、結構緊湊;氣、液缸分置,不會產生竄氣竄油現象;因液壓缸工作壓力可以相當,液壓缸可制成相當小的直徑(不必與氣缸等直徑);但因氣、液兩缸安裝在不同軸線上,會產生附加力矩,會增加導軌裝置磨損,也可能產生“爬行”現象。串聯型氣-液阻尼缸還有液壓缸在前或在后之分,液壓缸在后參見圖42.2-5,液壓缸活塞兩端作用面積不等,工作過程中需要儲油或補油,油杯較大。
CKD帶制動超無活塞桿型氣缸的結構見圖42.2-10。與普通氣缸相比,此種沖擊氣缸增設了蓄氣缸1和帶流線型噴氣口4及具有排氣孔3的中蓋2。其工作原理及工作過程可簡述為如下五個階段(見圖42.2-11):
*階段:復位段。見圖42.2-10和圖42.2-11a,接通氣源,換向閥處復位狀態,孔A進氣,孔B排氣,活塞5在壓差的作用下,克服密封阻力及運動部件重量而上移,借助活塞上的密封膠墊封住中蓋上的噴氣口4。中蓋和活塞之間的環形空間C經過排氣小孔3與大氣相通。Z后,活塞有桿腔壓力升氣源壓力,蓄氣缸內壓力降大氣壓力。
階段:儲能段。見圖42.2-10和圖42.2-11b,換向閥換向,B孔進氣充入蓄氣缸腔內,A孔排氣。由于蓄氣缸腔內壓力作用在活塞上的面積只是噴氣口4的面積,它比有桿腔壓力作用在活塞上的面積要小得多,故只有待蓄氣缸內壓力上升,有桿腔壓力下降,直到下列力平衡方程成立時,活塞才開始移動。
CKD帶制動超無活塞桿型氣缸,日本ckd無桿氣缸
CKD磁性超無活塞桿型氣缸腔內壓力(壓力) (Pa) ; p20——活塞開始移動瞬時有桿腔內壓力(壓力) (Pa) ; G——運動部件(活塞,活塞桿及錘*模具等)所受的重力(N) ; D——活塞直徑(m) ; d1——活塞桿直徑(m) ; Fƒ0——活塞開始移動瞬時的密封摩擦力(N) . 若不計式(42.2-1)中 G 和 Fƒ0 項,且令 d=d1, ,則當 時,活塞才開始移動.這里的 p20,p30 均為壓力.可見活塞開始移動瞬時,蓄氣缸腔與有桿腔的壓 力差很大.這一點很明顯地與普通氣缸不同. 圖 42.2-10 普通型沖擊氣缸 三階段:沖擊段.活塞開始移動瞬時,蓄氣缸腔內壓力 p30 可認為已達氣源壓力 ps,同時,容積很小的 無桿腔(包括環形空間 C)通過排氣孔 3 與大氣相通,故無桿腔壓力 p10 等于大氣壓力 pa.由于 pa/ps 大 于臨界壓力比 0.528,所以活塞開始移動后,在Z小流通截面處(噴氣口與活塞之間的環形面)為聲速流 動,使無桿腔壓力急劇增加,直與蓄氣缸腔內壓力平衡.該平衡壓力略低于氣源壓力.以上可以稱為沖 擊段的 I 區段. I 區段的作用時間極短(只有幾毫秒) .在 I 區段,有桿腔壓力變化很小,故 I 區段 末,無桿腔壓力 p1(作用在活塞全面積上)比有桿腔壓力 p2(作用在活塞桿側的環狀面積上)大得多。
CKD帶制動超無活塞桿型氣缸的Z大是節省安裝空間。磁偶無桿氣缸:活塞通過磁力帶動缸體外部的移動體做同步移動。它的工作原理:在活塞上安裝一組強磁性的*磁環,磁力線通過薄壁缸筒與套在外面的另一組磁環作用,由于兩組磁環磁性相反,具有很強的吸力。當活塞在缸筒內被氣壓推動時,則在磁力作用下,帶動缸筒外的磁環套一起移動。氣缸活塞的推力必須與磁環的吸力相適應。機械接觸式無桿氣缸:在氣缸缸管軸向開有一條槽,活塞與尚志在槽上部移動。為了防止泄漏及防塵需要,在開口部采用不銹鋼封帶和防塵不銹鋼帶固定在兩端缸蓋上,活塞架穿過槽地,把活塞與尚志連成一體?;钊c尚志連接在一起,帶動固定在尚志上的執行機構實現往復運動.特氣缸的排列形式:一般5缸以下的發動機的氣缸多采用直列方式排列,少數6缸發動機也有直列方式的。直列發動機的氣缸體成一字排開,缸體、缸蓋和曲軸結構簡單,制造成本低,低速扭矩特性,燃料消耗少,尺寸緊湊,應用比較廣泛,缺點是功率較低。直列6缸的動平衡較,振動相對較小。大多6到12缸發動機采用V形排列,V形即氣缸分四列錯開角度布置,形體緊湊,V形發動機長度和度尺寸小,布置起來非常方便。
CKD帶制動超無活塞桿型氣缸,日本ckd無桿氣缸