CKD氣控閥,日本CKD,日本CKD氣控閥
CKD氣控閥和排氣閥裝在氣缸中部的閥室內。氣缸及活塞均分成直徑上大下小的兩段?;钊敳恳陨蠟闅飧椎牡蛪汗ぷ骺臻g,空氣經濾清器吸入氣缸?;钊胁康沫h形空間為壓工作空間,由低壓排出的氣體經間冷卻器冷卻送入壓進一步被壓縮。為了安全,低壓和壓分別裝有安全閥,它們的安全開啟壓力分別比額定排出壓力約15%和10%。電動機通過彈性連軸器帶動曲軸旋轉,再經連桿,活塞銷帶動活塞在氣缸內上下往復運動。當活塞從上止點向下止點移動時,空壓機處于吸氣過程,此時進氣閥彈簧被壓縮,閥片向下運動,于是進氣閥打開,吸入氣體?;钊匦袝r,即從下止點向上運動時,吸氣閥開始關閉,即閥片受其彈簧彈力作用向上運動與閥座密合位置。當吸、排氣閥均處于關閉狀態,活塞繼續向上運動時,氣體在缸內被壓縮,壓力升到排出壓力時,排氣閥閥片向上運動壓縮彈簧而開啟,壓縮過程結束。排氣閥開啟后,缸內壓力即將保持排出壓力大小不變直到活塞行上止點,全部氣體被排出,排氣過程結束。
CKD氣控閥是依靠控制流體壓力,可以使單向閥反向流通的閥。這種閥在煤礦機械的液壓支護設備中占有較重要的地位。液控單向閥與普通單向閥不同之處是多了一個控制油路K,當控制油路未接通壓力油液時,液控單向閥就象普通單向閥一樣工作,壓力油只從進油口流向出油口,不能反向流動。當控制油路油控制壓力輸入時,活塞頂桿在壓力油作用下向右移動,用頂桿頂開單向閥,使進出油口接通。若出油口大于進油口就能使油液反向流動。
CKD氣控閥座1飛閥片2、彈簧3、升程限制器4和將它們組為一體的螺栓,螺母等組成。排氣閥的結構與吸氣閥基本相同,兩者僅是閥座與升程限制器的位置互換,吸氣閥升程限制器靠近氣缸里側,排氣閥則是閥座靠近氣缸里側。環狀閥因其閥片為薄圓環而得名閥座與升程限制器上都有環形或孔形通道,供氣體通過。閥片與閥座上的密封口貼合形成密封。升程限制器上有導向凸臺,對閥片升降起導向作用。
CKD氣控閥,日本CKD,日本CKD氣控閥
CKD氣控閥閥片運動曲線。其中1為吸氣閥的運動曲線,2為排氣閥的運動曲線??v坐標代表升程h,橫坐標為曲軸的轉角(或時間)。從圖中可以看出氣閥的開啟和關閉都是比較快的。并且氣閥的開啟速度總是要于氣閥的關閉速度,這是因為氣閥的開啟過程是在活塞速度很的階段進行的,而氣閥的關閉卻是在活塞已位移到接近止點位置,活塞速度已經很低的情況下進行的。氣閥在啟閉過程中,閥片、升程限制器及閥座都將受到交變沖擊載荷作用,很容易造成磨損和破壞。根據某些關于氣閥的研究文獻可以看出閥片對升程限制器或閥座的沖擊力的大小與以下諸因素有關:閥片大時,沖擊力大。故閥片輕對減小沖擊力是有處的。也可以看出用增加閥片厚度的辦法來減少閥片中的應力并不一定能得到預期效果。目前壓縮機中的氣閥多采用多環窄通道氣閥,閥片較輕、沖擊力將減少,這是有利的。
CKD氣控閥的彈簧過軟或者由于膠著等原因,使氣閥延遲關閉,沖擊力特別大,氣閥易損壞。為了提壽命需要加大彈簧力,但彈簧力過大也不太合適,因為此時不但會加大氣流通過氣閥的阻力損失,而且還因氣閥兩邊的壓力差不足以克服彈簧力,使閥片不能一直貼合在升程限制器上而產生振蕩造成總的阻力損失增加。因此為克服這一矛盾的影響,選用變剛性彈簧是比較的,即彈簧力在氣閥剛開啟階段較軟,以后迅速變硬,以減少氣閥對升程 限制器的沖擊;關閉時,開始很迅速,后來彈簧力迅速變小,可以減少對閥座的沖擊。
CKD氣控閥在液壓系統中的位置或反向出油腔后的液流阻力(背壓)大小,合理選擇液控單向閥的結構(簡式或復式)及泄油方式(內泄或外泄)。對于內泄式液控單向閥來說,當反向油出口壓力超過一定值時,液控部分將失去控制作用,故內泄式液控單向閥一般用于反向出油腔無背壓或背壓較小的場合;而外泄式液控單向閥可用于反向出油腔背壓較的場合,以降低Z小的控制壓力,節省控制功率。系統若采用內卸式,則柱塞缸將斷續下降發出振動和噪聲。
CKD氣控閥,日本CKD,日本CKD氣控閥